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abstract

We develop a method to approximately solve a large staircase linear program
that optimizes decisions over multiple time periods. A bound on the approxima-
tion error is also developed. The approximation is derived by a proximal cascade,
which sequentially considers overlapping subsets of the model's time periods, or
other ordinally defined set. In turn, we bound the cascade's deviation from the
optimal objective value by a Lagrangian cascade, which uses proximal cascade
dual variables to penalize infeasibility. When tested on the NPS/RAND Mobil-
ity Optimizer, a large temporal LP developed for the US Air Force, we often
observe gaps between the approximation and bound of less than 10 percent, and
save as much as 80 percent of the time required to solve the original problem
[Baker, 1997]. We also address methods to reduce the gap, including constraint
extension of the Lagrangian cascade, as well as a cut generation approach similar
to nested decomposition.

1 Introduction

This paper presents a combined method to approximate the solution of a staircase linear

program (SLP) and to provide a bound on the approximation's error. The approximation

method, or proximal cascade, uses a rolling-horizon technique to sequentially solve overlap-

ping subsets of an SLP, where each subset is defined by a contiguous portion of the staircase.

The error bound is produced by the Lagrangian cascade, which solves subproblems that are

also defined by contiguous portions of an SLP, but are made separable by relaxing rows that

would otherwise link colunns from different subproblems. We provide results of the cas-

cades used on the NPS/RAND Mobility Optimizer (NRMO), a large linear progr'am (LP)

that analyzes US Air Force (USAF) airlift effectiveness in a wartime contingency [Rosenthal,

et al., 1997].

Staircase linear optimization models are widely used in many areas such as scheduling,

where decisions of a given time period directly affect only the decisions of proximal time



periods. Unfortunately, SLPs frequently require considering a large, if not infinite number of

time periods. This presents two difficulties: 1) data gathering for the latter periods of such

a znidel may prove problematic, and 2) the resulting model may be too large to solve. Not

surprisingly, a human scheduler faces the same difficulties. namely reconciling the increasing

number of options with decreasing certainty as the number of time periods grows. For either

the hmunan scheduler or the optimization model, perhaps the most straightforward way of

dealing with the difficulties incurred by a large problem is to make decisions involving

only a subset of the problem's time periods, and then move forward to a new subset.

This temporally proximate myopia, or inability to see the full future problem at any one

point, may result in a suboptimal solution, but can make the problem simple enough to

solve. Moreover, a model like NRMO, which attempts to mimic scheduling in order to

produce plans but not actual schedules, is better if it can incorporate the realism of myopic

scheduling. For example, when NRMO is used to help select aircraft fleets or airbase

infrastructure so as to maximize a delivery system's effectiveness, it should optimize based

on the inherent linitations imposed by wartime uncertainty, not on a omniscient scheduling

capability. Thus, mnyopia is desirable whenever perfect foresight is unwarranted.

Charnes and Cooper [1961, pp. 370-388] first suggested limiting the number of time

periods considered in an SLP, and there have been many variations since. Most notably,

Brown, Graves, and Ronen [1987] develop solution cascading. This method solves a series

of small problems, each consisting of a subset of a large model's time periods. These

small problems then form an advanced basis from which the large problem, or monolith, is

easily solved. Other, "rolling horizon" applications truncate an infinite time horizon, which

consider temporal myopia an unfortunate, but necessary by-product of the truncation. In

contrast, the proximal cascade proposed here solves overlapping subproblems of models

with a finite number of time periods, and those where temporal myopia must be part of

the modeling abstraction (Brown, Dell, and Wood [19971 present a number of models where

nmopia is applicable).

The closeness of a proximal cascade approximation to the overall LP solution is de-

pendent on many scenaric>-specific factors, and cannot be guaranteed for most problems

(significant exceptionns to this include Manne [1970], Aronson et al. [1985], and Walker

[1995]). In order to supplement the proximal cascade approximation, we also develop an

op)timistic bound on the LP's solution value by exploiting information der'ived from the

proximal cascade. By relaxing the constraints associated with certain time periods of an

SLP, we can de-couple a large problem into several subproblems.

Lagorangian relaxation has long been used for decompositions of many sorts; it discour-

aoes violation of relaxed constraints through penalties. The LagTangian penalty is applied



to a series of separable subproblems, and an optimistic bound for the monolith solution's

objective value is derived [e.g., Parker and Rardin, 1988, pp. 205-2:37]. Unfortunately,

finding the correct penalty values for relaxed constraints is often as difficult as solving

the problem without the relaxation. However, we show that reasonable penalties for the

relaxed constraints are readily available from prior dual solutions during the proximal cas-

cade. A Lagrangian cascade produces a bound on the LP solution by incorporating the

proximal cascade penalties in its subproblems. When combined with the proximal cascade

approximation, the size of the gap between the two values gives a quantitative assessment

of proximal cascade's solution value.

We outline the notation used in this paper in Section 2. In Sections 3 and 4 we describe

the proximal and LagTangian cascades. In Section 5 we propose a variation on Benders'

decomposition relevant to cascades. Finally, in Section 6 we present a NRMO case study

that uses cascades.

2 Notation

Except as noted, we assume the following staircase structure for the problem to be solved

(referred to as the "monolith," or "problem M"):

(M) z* = min Ctxt (1)
tET

s.t. Btxt- +Atxt bt V tET\{1} (at) (2)
Xt > 0 V t E T (3)

where t E T denotes time periods (or other ordinally defined set), ct, bt, At, Bt are given

data, and xt, at are vectors of primal and dual decision variables. We assume this problem

has primal solution xt. Rows and columns that intersect in a non-zero element of At or Bt

are said to be associated. Each row (indexed by t) is associated with columns indexed by t

and t - 1; this creates a linkage between these two set elements. A row's linkage of t and

t - 1 denotes a row width of two.

Problem M is a simplification of a more general monolithic form, which may include

rows with width greater than two. All the results and techniques of this paper have been

applied to the more general form, but for simplicity of presentation we retain the row width

of two.

3 Proximal Cascade

A proximal cascade is composed of subproblems 1, 2, ..., N, each of which consists of all rows

and colunms indexed by overlapping subsets of T, the cascade index set (conventionally
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a set of time periods). These are the active rows and columns of a subproblem n; the

corresponding elements of T are the active indices. Figure 1 depicts N overlapping subsets

of T, suggesting a cascade.

CW

n=1

Time 
-:N

Figure 1: Sequence of subproblems nz forming a proximal cascade. Each subproblem con-
tains rows and columnns indexed by overlapping subsets of active time periods. The input
parameters cw and v specify the number and overlap of active time periods, respectively.

Two input parameters are required to define the cascade subproblems: 1) cascade width

cw, the number of periods active in each subproblem, and 2) cascade overlap v, the number

of periods common to two adjacent subproblems. The following additional parameters help

describe the subproblems:

ftf the first time period of subproblem n.
ltn the last time period of subproblem n.
NC n G {1, ... , N}, the set of proximal cascade subproblems.
T,•' {t e T : f•n < t < ltn}, the active periods of subproblem n.

f{t E T: ft < t < ft-+ 1 } for ii <N

TP/ f {tET:ft•<t} forn=N
the active periods of subproblem n excluding periods that overlap
with the next subproblem

rt' solution vector for subproblem n. A feasible solution is assumed to exist.

Throughout the paper, we use a fixed cw and v, so that ftK and Itn are derived according"

to:

ftn

In mm-[T,-(n-1)-(cw- - v) +cw
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Each subproblem n has the form:

(PCAS')
Zn ct=t + min IctIt (Pn.1)

l' <fltETFn' tETCn

s.t. Atxt _ bt - Bt t I (P-.2)
Btxt-I +Atxrt >_bt ftn < t <_ In (P-m.3)

xt > 0 ft < t < lt (P-.4)

In addition to the active variables, the objective function of a PCAS' subproblem in-

cludes variables indexed by t <fti, which are fixed to the optimal value computed in the last

subproblem in which they were active. The first constraint's right-hand-side is reduced by

the resources consumed by the fixed level of x"__-. Thus, the feasibility of PCAS' depends

on xt_- The constraints indexed by t : ftn < t <It' are unchanged, and the constraints

indexed by t >lt' are relaxed. Figure 2 shows the relationship of a proximal cascade sub-

problem to the surrounding subproblems.

Variables:

Fixed Re-optimized ! Optimized in subprob n Fixed at
before in.-.subprob.n . ..... 0ih

-ubprob n' Fixedafter subprob Re-naoR°pstimi-zed subprob n
;after subprob n~

ft" n itn-1 ft"+1 Itn
1' V

-- --- - - ........ .... ! -......... .. .... .... .. .. .. .... .. .. .. ....

TFn

TC

Figure 2: A single proximal cascade subproblem optimizes variables whose time periods
are indexed by the active set (t E TCn ). Thus, it re-optimizes variables indexed by time

periods active in the previous subproblem, t E T.- InTU, (the number of periods in this
overlap is v). Constraints of future time periods are relaxed, and variables of future periods

are fixed at level 0. Variables whose time periods are indexed by t E TPm are fixed after
subproblem n.

The proximal cascade heuristic proceeds as follows

Forn= l,...,N {
Define and solve subproblem P(OA,5
Fix and output the value of x', Vt E TP

}
Output proximal cascade objective function value, zN.
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Selection of cascade width, cw, and cascade overlap, v can play a large role in the cascade

solution quality, which we define as 1/ IzN -z (solution quality is infinite when z N = z

(Our experimental resiilts suggest that v should be at least as large as the maximum number

of time period indices that are c:ommon to consecutively indexed rows. This permits every

row to have all associated columns active in at least one subproblem.

The following proposition demonstrates that the proximal cascade's objective function

value provides an upper bound on the monolith's objective function value:

Proposition 1 z* < zN.

Proof:
z* = min ctX t

tý T
s.t. (2), (3)

< min E Ct'-t
t( T

s.t. (2), (3)

Xt =XT Vn < N, t c TFR

_ ett +rmin _ ct2 t
W'<N tc TF-' tEtTCN

SAt. ( PN.2), ( P N.3), ( PN.4),

The inequality holds because fixing a subset of the xt restricts the original problem.

In addition to providing an upper bound on z*, a feasible proximal cascade solution

(I:n, V nENC, tc TF) is feasible to the monolith, since the rows of the monolith are enforced

by the rows of PCAS' V nENC.

The primary advantages of using a proximal cascade lie in its abilities: 1) to approximate

the solution of arbitrarily large staircase LPs, and 2) to mnimic real-world myopia when

appropriate. However, since the proximal cascade is a heuristic, some bound on the solution

error is desirable.

4 Lagrangian Cascade

Lagrangian relaxation has long been used to bound, or even solve, perhaps approximately,

linear and integer progoTans by solving subproblems. A temporal partition allows each

subproblem to be solved separately by taking the Lagorangian relaxation of rows that would

otherwise appear in more than one subproblem. The structure of a staircase problem invites
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Lagrangian relaxation, since rows are associated with variables from only a small number

of adjacent time periods. It is all the more attractive if the maximum row width is small.

Like a proximal cascade, a Lagrangian cascade is composed of subproblems, each con-

sistino of active rows and columns indexed by subsets of the cascade index set T. Unlike the

proximal cascade, the active index subsets are disjoint, forming a partition of T. The mono-

lith problem is separated into Lagrangian subproblems by relaxing rows that link columns

with cascade indices of different subsets. As with all Lagrangian relaxations, objective func-

tion penalties are added to the columns of these relaxed constraints in order to discourage

violation. We refer to these rows as Lagrange-relaxed rows.

Unlike traditional Lag'rangian relaxation, a Lagrangian cascade may exploit a previously

computed proximal cascade's dual solution for its objective function penalties. This obviates

a c.omputationally intensive multiplier search.

Figure 3 illustrates a partition of T into L subsets, each of which has width lwid, except

for the last subset which may be limited by the cardinality of T . Note that Iwid need not

be constant for all subproblems, but is presented that way for convenience.

4 wid

t=l ==(relax) •rlx

,r=2 I==(rlax

w(relax)

€'L

Time

Figure 3: A Lagrangian cascade partitions the rows and columns of a monolith into many
Lagrangian subproblemns f of contiguous time periods. Overlapping rows are Lagrange-
relaxed.

The following additional notation is used to describe the LagTangian cascade:
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fe The first time period in subproblem f.

It' The last time period in subproblem f.

TRL' it : • t : < $ < }, the active periods of subproblem f

TR ft2, Y, ... ,ftL} the periods corresponding to Lagrange-relaxed row indices
TRL', f = 1

WL It :t < t < itt}, f > 1
the periods of subproblem t corresponding to active row indices

CL t C {1, ... , L}, the set of Lagrangian cascade subproblerns
I( ) 1 if argument is true; 0 otherwise

As before, specifying the width value lwid permits a simple derivation of ft' and ltf

ft= (0-1) -lwid+ 1

it = min [T, f- lwid]

Figuire 4 shows the relationship of a Lagrangian cascade subproblem to its neighboring

subproblems.

Rows Columns Rows
relaxed, active, relaxed,
Columns Rows Rows and Columns active I Columns

Ned at 0 Irelaxed fixed atO

Ite-' ft It' ft f+

Iwid

TL '

TRL'

Figuire 4: A single Lagrangian cascade subproblem includes columns indexed by t E TRLt
(the active set ), and rows indexed by t ETLt. Rows indexed by ftt are relaxed, and
a Lagrangian penalty is applied to the objective function coefficients of active columns
associated with relaxed rows.

Given this notation, define the Lagrangian cascade problem LC:

(L")
ZLC = nin T_ ct:lt

tE:T

+ E Oct (bt Atxt ) (L. .1)
tETR

s.t. Btxt-I +Atxt Ž bt Vt E uTLI (LC.2)
rt > 0 VtET (LC.3)
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The objective function includes Lagrangian penalties at _> 0. The remaining structural

constraints include only the active staircase rows.

Because all of the linking rows between subproblems are Lagrange-relaxed, LC decom-

poses into L disjoint subproblems with zLC = e

(LCA5e)
ze = rin t Cttxt + afte (bftt - Afttrxftt) I(v > 1)

t(_TRL'

-caftt+1Bfte+ixjte I(t < L) (L. )
s.t. Btxt- 1 +At~x > bt Vt E TL' (L1.2)

Xt > 0 Vt E TRL' (LV.3)

A Lagrangian cascade proceeds as follows:

Record dual variable levels (at) from proximal cascade solution Vt E TR.
Fort= 1,2,...,L {

Define and solve subproblem L7AYS given above
Record the value of ze

I
Output the Lagrangian cascade solution value: -e ze.

Solving the relaxed problem in this manner allows the tractable computation of a lower

bound on z*. By the theorem of weak Lagrangian duality [e.g., Parker and Rardin, 1988,

p. 2061,

ZLC • zt < Z*.
e

As stated earlier, the quality of this bound depends in large measure on the quality of

the dual variables. These variables, in turn, depend on the quality of the proximal cas-

cade solution. Frequently, the closer a proximal cascade solution approximates the optimal

monolith solution, the c:loser the associated duals will approximate the optimal monolith

dual solution. Hence, there is strong incentive for making the proximal cascade solution as

close to the monolith solution as possible.

4.1 Extended Constraints

The Lagrangian cascade bound can be improved by modifying the constraint: Bfttxlte-i +

Aftexfte >_ bfte, which is Lagrange-relaxed in each subproblem f. However, to insure the

validity of the relaxation, we define a surrogate copy of the variable xltt-1, which we denote

9



Consider problem A!, which is identical to the monolith, but with constraint M.1 and

T1.2 added.

(T) ZA! = Mlln (1)
t( T

s.t. Bt:r.t-I +Atxt > bt 1 < t < ITI (2)
Xt > 0 VtET (:3)

Bt~t- +Atxt :f bt Vt c TR (M.1)
ýt-l > 0 Vt E TR (M.2)

M.l restores all Laorange-relaxed constraints from LC, but it replaces Xt-I with a

surrogate variable 3t-I Vt E TR. Except for non-negativity, Yt-I appears nowhere else in

the formulation. By the following proposition, Mi is not a restriction of the monolith.

Proposition 2 z * > z

Proof: Let -:t-1 = x•_- Vt E TR. Since xt-I must be feasible to (2) and (3), it
must also be feasible to TI.1 and P.2. and consequently problem Al. Thus, z can be no

worse than z*.

0

In fact, z* = zf, because the surrogate columns do not contribute to the objective, nor

do they allow the original columns to further contribute to the objective. However, this is

not central to the overall result, which is to show that a Lag-rangian relaxation of M is still a

relaxation of the monolith Al. We define this relaxation as LC" (problem Al with constraint

(2) relaxed for all t G TR):

(LC)

ZLC = min 2 CtXt
tEET
+ E (t (bt - Atxt - Btxt-1)

tETR

s.t. Btzt-l +Atxt > bt Vt c UTLt - (LC.2)
X:t Ž 0 Vt c T (LC.3)

Bt.t-I +At:rt bt Vt E TR (M.1)
Xt- > 0 Vt E TR (AII.2)

By combining FProposition 2 with the fact that LT is a relaxation of A1, we have:

z" > zM > zLC.

The following proposition shows that zLC bounds zLC from above. which may

improve the Lagrangian bound on z*:

10



Proposition 3 zEC > ZLC

Proof: Relaxing M.1 and M.2 eliminate xt from the problem. What remains is

problem LC. Thus, LC is a relaxation of LC, and zLC > zLC.

01
Combining the above results, we see that zL7,may provide a tighter bound oil z* than

z L(.

z* > zLC > zLC.

Although incorporating extended constraints enlarges each subproblem, the increased solu-

tion time may be rewarded by a tighter bound on z*. Consider the following staircase LP

(shown as a maximization):

z* = max 2X 1 +4X 2 +X 3

s.t. X, < 2

XI +X 2  < 3 (a 2 )
X 2 +X 3 < 4

X 1, X 2 , X 3 > 0.

A solution to this problem is: X* = 3, X* = 1, with z* - 13. Lagrangian relaxation of the

second row results in the following for a2 > 0:

zLC = max 2X 1 +4X 2 +X 3 + a2(3 - X- X 2 )

s.t. X1  < 2
X 2 +X 3 < 4

X 1, X2 , X 3 > 0.

"When a2 = 1, the above may be rewritten as

zLC =3 +-max X + max 3X 2 +X 3

s.t. X 1 < 2 s.t. X 2 +X 3 < 4
X 1 > 0 X 2 , X3 > 0.

This has a solution X 1 = 2, X 2 = 4, with zLC = 17, which is an optimistic bound on the

first problem, z* = 13. However, the bound may be tightened by duplicating X1 with X1I,

and incorporating the method of extended constraints:

zLC =3 + max X + max 3X 2 +X 3
s.t. X 1 K 2 s.t. X1 +X 2  < 3

X, >0 X 2 +X 3 < 4
X•1 X 2 , X 3 > O.

This has solution X1 = 2, X 2 = 3, with zLC - 14, resulting in a tighter bound than zLC.

11



5 A Nested-Cascade Variation of Benders' Decomposition

In this section, we consider the use of successive proximal cascades, which we define as a

proximal cascade series. We show that cascade solution quality can improve siguificantly us-

ing a strategy that adds weak cuts from previous proximal cascade solutions. This approach

is a heuristic variation of Benders' decomposition [Benders 1962].

Exploiting a staircase structure to decompose an LP is described by Glassey [1973], as

well as Ho and Manne [19741. These methods successively add dual cuts to a series of master

problems. Each master problem serves as a cut-generating subproblem for another master,

thus warranting the name "nested decomposition." Using a variation of this approach in

concert with Lagrange multipliers taken from previous proximal cascade dual solutions, we

attain a tighter gap between the proximal and Lagrangian cascade solutions than can be

obtained in a single-series cascade.

In order to demonstrate nested-cascade decomposition, consider problem BCA 'ý', which

is the solution to the remaining periods, given the fixed columns of subproblems 1,...,n - 1.

In other words, BCASn provides the solution to the remaining monolith, given the cascade

solution for t E U_'<,, TF'

(BCAMY)
z n t TZ X"

+ mnin ctx~t + f(x 1 t1 )
x trTCh

s.t. At'xt > bt - nt,-]tf- (BA-1
Btxt_ t-1 t < ftn (BCA .I

Btx 1t- +Atxt Ž bt ftfl <t < t' (BOAS,.•2)
Xt > 0 Vt c TC C (BCAR"'.3)

where:

f((xz -) = rmin F
x t>lt"

s.t. Atxrt >_ bt - Bt:rlt, t = Itn + 1
Bt~xt- +Atxt > bt Vt > It" + 1

xt > 0 Vt > lt +1I

We can rewrite B(CA5' by taking the dual of f(xitý)

12



nn' z ctxt +
-' <- týTFW'

E CtXt + nmax altn+l (btn+ -- Bitn+lXItn) ± atbt
rc-TCn Ct t>ltn+l

sA. (B CA S-.1), (B CA 9. 2), (BCAS-.3,)
Inin atAt + at+iBt+i < Ct it < t < T

aTAT < CT
at > 0 V't > Itn

This formulation is equivalent to:

z n -- E E ctx", + F2 Ctxt
-'<n t(-TF-' t ETCn

+ mi(ax ) 1 (bt'n+l - Bitn+lXltn) + j)btI{ n l a xj I t + lt l n ~

SAt. (B(- AS-. 1), (B(-,AS-. 2, (BCAS-. 3)

Wj)where at is a component of vector aU) E J, defined by the region:

atAt +- at+1 Bt+l I ct ltn +- 1 < t < T

aTAT • CT

at > 0 Vt > ltn

This region, if not bounded, may require that feasibility cuts be added to the formulation

of BCAS" [e.g., Parker and Rardin, 1988, pp.237-244]. Ignoring this complication for now,

cascade BCAS' may be rewritten as:

Z n S S ct4 + mill1 E ct~rt ± 9

t>1tn+]

In a traditional nested decomnposition, each of these problemns serves as the master prob-

lemn for its successor andi the subproblem for its predecessor. The subproblems derive cuts

of the-forin given by BCAffl'.4. Accordingly, a relaxed Benders' master problem consists of

a subset of these. cuts, which is an approximation of the monolith when 7z = 1. Additionally,

the mnaster problem includes feasibility cuts (not shown), wvhich ensure that the value of

xut,, permits feasibility of the successor subproblem.

1:3



Nested decomposition partitions the rows and columns of the monolith into subproblems.

In this way, TC( n TCn+ 1 = 0. It follows that Itn + 1 = ftn+1 . This does not hold for a

lproximal cascade, from which nested-cascade decomposition is derived.

The nested-cascade decomposition uses an overlapping series of subproblems, which

weaken the optimality cuts given by BCAS.4, but which reduce or eliminate the need for

feasibility cuts. In order to distingi.iish the difference between nested and nested-cascade

decomposition, define the latter subproblems as BO1 , BO",..., BC>, BCI,+I,..., BOC. Al-

though each subproblem's form is identical to BCAS', each subproblem is overlapping such

that ft"+l < It?' + 1:

(BO'+')
n= n + + ± ain + ctxt + f(Xrtn.,)

n'<n+1 tE:TFn'

Unlike the B(7A.Sv+l subproblem, B(!+' re-optimizes Xftn+2 ,...,mt. Taking the dual of

B(CI+1 yields a feasible region defined by Jn:

atAt + at+,Bt4 1 • ct ftn±I < t < T

OTAT < CT

a(t > 0 Vt > ftn+1

Since ftn+l < Itn + 1, the feasible region defined by Jf• is a restriction of the re-

gion defined by J". In particular, the variable passed to the master problem, alt.+,, is

more restricted in Jfl than in JY. This can be seen by noting that a0 tt+l is restricted by

Slt,+l Alt,,+,+•t,+2Flt,+2 :ý Cltn+l in both jn and Jn, but also by oQtAlt,±ot,+lBLtn+l B

clt,, in Jfn. Therefore, the cuts provided by subproblem BC,+] are weak, because a restricted

dual feasible region corresponds to a relaxed primal feasible region.

It is only the cascade overlap that distinguishes the regions J' and J', which suggests

that they share many similarities. The result is a trade-off; overlapping subproblems reduces

Or eliminates the need for feasibility cuts, at a cost of weaker optimality cuts.

The nested-cascade variation of Benders' decomposition proceeds as follows

Select acceptable gap tolerance, GA(PTOL
Select maximum inumber of allowable series, SAlAX
Let j = 0, gap = M, SET_J = Vn
While j < SMAX, and gap > GAPTOL {

For n = 1, 2,...,N {
Solve Bn and record af(t+11), fix and recordi x: Vt E TF'
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}
Record zN

SETJ = SETJ U {j} Vn
For f = 1, 2, ..., L {

Solve LCASe using Q Vt G TR
Record zi

gap =z -- z
}
Output solution x. Vt E TFn, n G NC. with objective value zN

We applied the nested-cascade technique to 10 test staircase problems [Baker, 1997].

The first series of the nested-cascade decomposition solved subproblems BCO,BC(, ... ,B@N,

without any cuts. Subsequent series solved these subproblems in the same order using the

heuristic cuts generated by the dual variables from subproblems of all previous series. Each

series included one additional cut per subproblem. The proximal cascade solution value

was the objective value of the last subproblem of the most recent series. The Lag-rangian

cascade used the dual variables supplied by the most recent proximal cascade. In general,

the method did not converge to monolith optimal, but stabilized to an average proximal-

Lagrangian gap of 2.7 percent for the 10 problems. Over half (60%) of the gap reduction

was attributable to the Lagrangian cascade, which reflected the benefit of more accurate
Lagrangian penalties.

The above results suggest a promising alternative to a single series cascade (although

this method should not be used when enforcing myopia). Unlike traditional nested de-

composition for staircase models [Glassey, 1973; Ho and Manne, 1974], the nested-cascade

variation lac:ks a convergence proof. However, traditional nested decompositions have no

cascade overlap, and will often have greater difficulty maintaining primal feasibility. Thus,

nested-cascade decomposition has an advantage over many nested methods, which must

rely on feasibility cuts.

6 Case Study: The NPS/RAND Mobility Optimizer

The Naval Postgraduate School / RAND Mobility Optimizer was developed in 1996 as an

alternative and complement to simulation for USAF strategic: airlift analysis [Rosenthal, et

al., 1997; Melody et al., 1997]. It is the consolidation of mobility optimization models from

the Naval Postg'aduate School [Morton, Rosenthal, and Lim, 1996; Rosenthal, et al., 1997]

and RAND [Killingsworth and Melody, 1994]. The project's sponsor is the USAF Studies

and Analyses Agency, Global Mobility Branch. NRMO has been used by this agency as
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well as by the office of the Secretary of Defense [Stucker and Melody, 1997], and the Joint

Chiefs of Staff Force Projection Branch [Datumm forthcoming].

Strategic airlift is defined as: "...the movement of units, personnel and material in

support of all Department of Defense agencies between the continental United States and

overseas areas" [Dept. of the Air Force, 1992, p. :301]. Although this definition embod-

ies many missions, a primary goal of strategic airlift is to maximize the on-time delivery

of combat and support forces as directed by the national command authorities. NRMO

represents strategic airlift as a multi-period, multi-commodity, network-based LP with a

large number of side constraints. The model is used by defense planners to provide insight

into mobility issues sucl as the adequacy of aircraft fleet and airbase infrastructure, as well

as the identification of system bottlenecks. Multiple scenarios have been used to address

questions of fleet selection and airfield improvements.

There are four primary input requirements of the NR\MO LP: 1) the required cargo

and passenger movements as delineated by the Time Phased Force Deployment Docmnent

(TPFDD), a widely used planning database, 2) the types and nimibers of available aircraft

and crews, 3) the usable airfields, and 4) the allowable routes for each aircraft type. The LP

minimizes the weighted sumi of late and undelivered cargo penalties, subject to restrictions

such as aircraft flow balance, aircraft payload, and airfield capacity. The solution specifies

the airlift mission assignments by requirement moved, aircraft and route flown, and time

delivered. From this output, information such as unit closure (the time when all of a unit's

cargo and passengers have been delivered) may be computed. Return routings and airfield

saturation levels are also given in the LP solution, as well as the marginal values of resources.

In addition to the four primary inputs, other data allow NRMO to model aerial re-

fueling, geographic crew movement, and intra-theater airlift. If directed by the scenario

input, NRMO can assign dual-role aircraft as either airlifters or aerial refueling tankers,

and reassign them as the contingency warrants. The movement of crews can be modelled
oeoOTaphically by balancing their flow through selected rest bases, and observing limits on

crew utilization. Finally, NRIMO allows intra-theater activity by alternating selected air-

craft between tactical (short-haul) and strategic: (long-haul) roles, again as the contingency

warrants.

The structure an(d complexity of NRMO motivated the development of the proximal

and Lagrangian cascades, and provided a test-bed of problems. A moderately sized scenario

involving over two hundred military units requiring movement results in an LP with around

27,000 rows, 126,500 colunms, and 921,500 nonzero coefficients. Problem dimensions can

increase well beyond this size as the time-step is decreased and the horizon is increased.

Large scenarios can easily overwvheln current coomputing capabilities. Additionally, the
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model should produce results that are intentionally myopic, since change and uncertainty

are characteristics of the underlying airlift scheduling system.

NRMO is, for the most part, an SLP with typical row widths of three time periods, which

is the typical maximum mission duration. Consequently, the proximal cascade overlap, v

must be at least two periods. Correspondingly there must be two periods of Lagrangian-

relaxed rows between each subproblem. The mnodel also requires other minor modifications

to accomnnodate cascades.

Two NRMO problem instances are used to test cascades. The first problem is the

primary test scenario used at the Naval Postgraduate School to verify and validate air

mobility linear programs [Baker, 1997]. The other scenario considers an ongoing study by

RAND [Stucker and Melody, 1997]. Extended constraints (Section 4.1) were used in both

scenarios; the cascading variation of Benders' decomposition (Section 5) was not used in

order to preserve myopia.

The performance tests measure the effect of three parameters on the proximal-

Lagrangian gap. Typically, larger values of the proximal cascade width, cw. proximal cas-

cade overlap, v, and Lagrangian cascade width, lwid should all reduce the gap. The test

results reflect these generalizations.

Both of the problem instances are generated by CAMS [Brooke, et al., 1992], and written

into MPS format. Additionally, the GAMS output provides a file that maps each row and

coluhm to its associated time index. The cascade logic is written in C using the CPLEX

callable library version 3.0 [CPLEX, 19941. A utility translates the solution reported by

CPLEX to a CAMS compatible format for further processing. Unless otherwise noted, the

computer used is an IBM RS6000/590 with 512MB of RAM. All times are given in CPU

seconds.

6.1 Notional Southwest Asia Scenario

The notional Southwest Asia (SWA) scenario is a small, easily solved problem that was

originally designed to test THRUPUT II [Morton et al., 1994], one of NRMO's predecessors.

It includes 21 military units, seven aircraft types, 35 routes and 30 time periods. The

associated linear program has 4,100 rows, 7,400 columns, 39,000 non-zeros, and a maximum

row width of three periods. In this scenario, a SWA contingency requires deployment of

several Army and Marine Coorps brigades from the continental US (CONUS), 15 Air Force

fighter wings from CONUS and Europe, and an Army mechanized division from Europe.

The movement requirements intentionally exceed delivery capacity in order to strain the

system and identify airlift bottlenecks.

Table 1, and Figures 5 and 6 illustrate that solution quality improves with increased
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Figuire 5: Solution gaps for the Southwest Asia scenario decrease significantly with increased
proximal cascade overlap. The triangles show the proximal (solid line) and Lagrang-an
(dotted line) cascade solution values for an 18-period proximal cascade width; the squares
show the solution values for a 20-period widlth. All Lagrangian cascade widths are 15. The
absolute gap, ineasured by the vertical distance between proximal and Lagrangian solution
values, is much smaller with a 10-period overlap than a five-period overlap, and smaller still

for a 15-period overlap.
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Figure 6: Solution gaps for the Southwest Asia scenario generally decrease as proximal
cascade width increases. Proximal cascade width has a smaller effect on the absolute gap
than the plroxinmal cascade overlap.
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Cascade Cascade Upper Lower Proximal Lagrange Total

Widthi Overlap Bound Bound %Gap Time (sec) Time (sec) Time (sec)
CW) V

Monolith 294.1 n/a n/a n/a n/a 61

20 5 296.6 286.9 3.4 47 19 66

20 10 294.6 290.0 1.6 57 20 77

20 15 294.1 292.5 0.6 94 18 112

18 5 303.6 262.0 15.9 46 18 64

18 10 296.7 287.1 3.3 67 21 88
18 15 294.1 291.6 0.9 124 18 142

15 5 303.3 275.9 9.9 41 19 60

15 10 295.4 286.3 3.2 73 19 92

15 12 294.7 285.2 3.3 107 19 126

10 5 305.3 273.7 11.6 41 20 61

10 7 300.0 266.4 12.6 58 20 78

Table 1: Relative gaps and solution times for the Southwest Asia scenario vary with cas-
cade parameter selection. The first two columns show proximal cascade widths and overlaps;

Lagrangian cascade widths are all 15. The remaining columns show the performance (com-

puting times are in seconds on an IBM RS6000/590 with 512MB RAM). For example, a

proximal cascade with width 18 and overlap 10 gives an upper bound solution value of

296.7; the corresponding Lagrangian lower bound is 287.1, resulting in a gap of 3.33%. The

proximal and Lagrange solve times are 67 and 21 seconds, respectively, for a total of 88

seconds. The first row of the table gives the monolith's solution value and time, which

provides a baseline for the other runs. Each test uses CPLEX 3.0 [CPLEX, 1994] with

primal simplex method and steepest edge pricing.

cascade overlap and width. Figure 5 shows a strictly decreasing gap with increasing cascade

overlap for cascade widths of 18 and 20. These decreasing gaps come at a computational

cost, however, as indicated by the proximal cascade solution times. Figure 6 also shows

generally decreasing gaps with increased cascade width, albeit less convincingly.

6.2 European Infrastructure Scenario

Concurrent with this research, a RAND Corporation study for the Office of the Secretary of

Defense (OSD) is examining European air bases transited by USAF airlifters. The purpose

of this study is to determine which bases have insufficient infrastructure to adequately

support a Major Regional Contingency (MRC) in Southwest Asia [Stucker and Melody,

1996]. The problem consists of 220 military units, six aircraft types, 22 routes, and 30 time
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periods. Approximately 75,/ of the scenario's movement requirements originate in C()NI US.

The corresponding linear program has 27,00() rows, 126,500 (oliimns, 921,500 non-z(r)s, and

a maxilmum staircase overlap of two periods.

(Cas,•cade Cascade Upper Lower Proximal Lagraange Total

Width Overlap Bound Bound Time (sec) Time (sec) Time (sec)

Monolith 106.1 n/a n/a n/a n/a 980

20 5 108.7 93.8 15.8 1010 590 1600
20 10 106.9 101.8 5.0 1260 704 196-1

20 15 106.9 102.9 3.9 1907 663 2570

18 5 107.4 91.8 17.0 933 630 1563
18 10 107.6 98.3 9.5 1352 605 1957
18 15 107.1 100.4 6.7 2652 715 3367

15 5 109.2 84.5 29.3 959 659 1618

15 10 107.6 96.0 12.1 1527 650 2177

15 12 107.5 99.9 7.6 2307 601 2908

10 5 113.3 75.8 49.4 1061 639 1700

10 7 110.9 83.7 32.4 1483 770 2253

Table 2: (Computational results for the European Infrastructure scenario also show that
relative gaps and solution times vary with cascade parameter selection. The solve times are
much longer than Southewst Asia scenario solve times due to problem size. All runs use
the OPLEX 3.0 Barrier algorithm [CPLEX, 1994]. Lagrangian cascade subproblems have
15 periods each. The first row is the monolith baseline; subsequent rows show performance
using various proximal cascade parameters. All times are in seconds. Cascading does not
save time compared to direct solution of the monolith in the experiments reported in Tables
1 and 2, because the computer used had sufficient memory to solve the monolith with little or
no paging. Table 3 shows the time advantage of cascades when memory is limited compared

to problem size.

The results of this scenario (see Table 2, and Figures 7 and 8) are generally consistent

with those of the first test. Figure 7 shows a pronounced reduction in gap as cascade overlap

increases, while Figure 8 shows a more moderate reduction with increased cascade length.

Ulpper bounds are of better quality than lower bounds, due to the sensitivity of the lower

bound to small errors in the Lagrangian penalties. Thus, the proximal cascade results show

that the effects of myopia are small, since most of the upper bound solution values are

within a few percent of the monolith value.
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Figure 7: This Figure depicts cascade solution values for the European Infrastructure sce-
nario when proximal cascade overlap is varied. Proximal cascade overlap has as large an
effect on this scenario as it did on the notional Southwest Asia scenario. As before, increas-
ing the overlap reduces the gap.
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Figure 8: Solution gaps for the European Infrastructure scenario are reduced with increas-
ing proximal cascade width. These reductions, although smaller than those seen in the
Southwest Asia scenario, are still quite evident.
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6.3 Solve Times

Cascades (1o not save computing time on the two scenarios described. fh(wever, the

test platform is a computer with sufficient memory for monolith solution without paging. In

order to verify that cascades save time when memory is limited, we constructed two smaller

European scenarios by reducing the number of aircraft types, and limiting the number of

days that each unit can be delivered. This reduction allows solution by a Dell Pentium Pro

200 mHz desktop computer with 64 MB RAM.

Table :3 shows that cascades save up to 80V/ of the time required for monolith

solution. The savings come at a moderate cost in solution quality, since limited memory

requires that cascade subproblems have small widths. This consequence is minor in models

such as NRMO, where myopia exists due to wartime uncertainty.

Cascade Cascade Proximal Lagrange Total % Time
Width Overlap Seconds Seconds Seconds Savings

Reduced European Infrastructure I (14,442 rows, 64,252 columns, 462,645 non-zeros):

Monolith n/a n/a n/a 4410 n/a
10 5 29.4 572 310 882 80.0
10 7 25.2 844 310 1154 73.8
15 5 14.1 4080 310 4390 0.5

Reduced European Infrastructure II (16,874 rows. 63,336 columns, 453,663 non-zeros):

Monolith n/a n/a n/a 4169 n/a
10 5 37.7 532 476 1008 75.8
10 7 19.4 760 480 1240 70.3
15 5 11.4 2160 480 2640 36.7

Table 3: Cascades offer a significant time savings when the monolith cannot be solved with
installed memory. The computer used for these results is a Pentium Pro 200 MHz desktop

with 64 MB RAM (previous results use an IBM RS6000/590 with 512 MB RAM). The

first row of each scenario shows the monolith solution value and time using the CPLEX

interactive barrier solver [O1'LEX, 1994]. The next two rows in each scenario indic:ate
cascades offer a dramatic time savings when moderate cascade widths are used. The final

row of each scenario shows that much or all of this savings is lost when cascades also require
paging.

7 Conclusion

Cascades provide a useful approximation strategy when problem structure permits, and

when model size or system myopia warrants. In this paper, we have formalized a cascade

method for approximating staircase LPs, and developed a Lagrangian cascade bound for



that approximation. We have also developed the nested-cascade, which may be useful when

primal feasibility is difficult to maintain in a traditional nested decomposition.

Using the NRMO model, upper bounds from the proximal cascade are typically within a

few percent of monolith optimal. Lower bounds from the Lagrangian cascade have generally

less quality, but are often still within a few percent of monolith optimal. Cascade solution

times are less than the monolith solution times when small cascade overlaps are used, or

when installed memory is limited [Baker, 1997].
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